4,711 research outputs found

    Axon fasciculation and differences in midline kinetics between pioneer and follower axons within commissural fascicles

    Get PDF
    Early neuronal scaffold development studies suggest that initial neurons and their axons serve as guides for later neurons and their processes. Although this arrangement might aid axon navigation, the specific consequence(s) of such interactions are unknown in vivo. We follow forebrain commissure formation in living zebrafish embryos using timelapse fluorescence microscopy to examine quantitatively commissural axon kinetics at the midline: a place where axon interactions might be important. Although it is commonly accepted that commissural axons slow down at the midline, our data show this is only true for leader axons. Follower axons do not show this behavior. However, when the leading axon is ablated, follower axons change their midline kinetics and behave as leaders. Similarly, contralateral leader axons change their midline kinetics when they grow along the opposite leading axon across the midline. These data suggest a simple model where the level of growth cone exposure to midline cues and presence of other axons as a substrate shape the midline kinetics of commissural axons

    Dual of Big-bang and Big-crunch

    Full text link
    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by procedure of the double anaytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are non singular at all as the coupling goes to zero in the N=4 Super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.Comment: 18 pages, 5 figures, references added, minor corrections, further minor corrections, v4: some clarification and more details adde

    Janus within Janus

    Full text link
    We found a simple and interesting generalization of the non-supersymmetric Janus solution in type IIB string theory. The Janus solution can be thought of as a thick AdS_d-sliced domain wall in AdS_{d+1} space. It turns out that the AdS_d-sliced domain wall can support its own AdS_{d-1}-sliced domain wall within it. Indeed this pattern persists further until it reaches the AdS_2-slice of the domain wall within self-similar AdS_{p (2<p\le d)}-sliced domain walls. In other words the solution represents a sequence of little Janus nested in the interface of the parent Janus according to a remarkably simple ``nesting'' rule. Via the AdS/CFT duality, the dual gauge theory description is in general an interface CFT of higher codimensions.Comment: 15 pages, 6 figures, v2 references added. v3 eq.(3.33) correcte

    Elliptic supertube and a Bogomol'nyi-Prasad-Sommerfield D2-brane--anti-D2-brane Pair

    Full text link
    An exact solution, in which a D2-brane and an anti-D2-brane are connected by an elliptically tubular D2-brane, is obtained without any junction condition. The solution is shown to preserve one quarter of the supersymmetries of the type-IIA Minkowski vacuum. We show that the configuration cannot be obtained by "blowing-up" from some inhomogeneously D0-charged superstrings. The BPS bound tells us that it is rather composed of D0-charged D2-brane-anti-D2-brane pair and a strip of superstrings connecting them. We obtain the correction to the charges of the string end points in the constant magnetic background.Comment: v3. 12 pages, journal version; title changed, length trimmed to fit for Rapid Communication forma

    Janus Black Holes

    Get PDF
    In this paper Janus black holes in AdS3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ black hole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.Comment: 28 pages, 2 figures, reference adde

    The Moduli Space of Noncommutative Vortices

    Get PDF
    The abelian Higgs model on the noncommutative plane admits both BPS vortices and non-BPS fluxons. After reviewing the properties of these solitons, we discuss several new aspects of the former. We solve the Bogomoln'yi equations perturbatively, to all orders in the inverse noncommutivity parameter, and show that the metric on the moduli space of k vortices reduces to the computation of the trace of a k-dimensional matrix. In the limit of large noncommutivity, we present an explicit expression for this metric.Comment: Invited contribution to special issue of J.Math.Phys. on "Integrability, Topological Solitons and Beyond"; 10 Pages, 1 Figure. v2: revision of history in introductio

    Scale Dependent Dimension of Luminous Matter in the Universe

    Get PDF
    We present a geometrical model of the distribution of luminous matter in the universe, derived from a very simple reaction-diffusion model of turbulent phenomena. The apparent dimension of luminous matter, D(l)D(l), depends linearly on the logarithm of the scale ll under which the universe is viewed: D(l)∌3log⁥(l/l0)/log⁥(Ο/l0)D(l) \sim 3\log(l/l_0)/\log(\xi/l_0), where Ο\xi is a correlation length. Comparison with data from the SARS red-shift catalogue, and the LEDA database provides a good fit with a correlation length Ο∌300\xi \sim 300 Mpc. The geometrical interpretation is clear: At small distances, the universe is zero-dimensional and point-like. At distances of the order of 1 Mpc the dimension is unity, indicating a filamentary, string-like structure; when viewed at larger scales it gradually becomes 2-dimensional wall-like, and finally, at and beyond the correlation length, it becomes uniform.Comment: 6 pages, 2 figure

    Zipf's Law in Gene Expression

    Get PDF
    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.Comment: revtex, 11 pages, 3 figures, submitted to Phys. Rev. Let

    Complete Supersymmetric Quantum Mechanics of Magnetic Monopoles in N=4 SYM Theory

    Get PDF
    We find the most general low energy dynamics of 1/2 BPS monopoles in the N=4 supersymmetric Yang-Mills theories (SYM) when all six adjoint Higgs expectation values are turned on. When only one Higgs is turned on, the Lagrangian is purely kinetic. When all six are turned on, however, this moduli space dynamics is augmented by five independent potential terms, each in the form of half the squared norm of a Killing vector field on the moduli space. A generic stationary configuration of the monopoles can be interpreted as stable non BPS dyons, previously found as non-planar string webs connecting D3-branes. The supersymmetric extension is also found explicitly, and gives the complete quantum mechanics of monopoles in N=4 SYM theory. We explore its supersymmetry algebra.Comment: Errors in the SUSY algebra corrected. The version to appear in PR

    The Most Severe Test for Hydrophobicity Scales: Two Proteins with 88% Sequence Identity but Different Structure and Function

    Full text link
    Protein-protein interactions (protein functionalities) are mediated by water, which compacts individual proteins and promotes close and temporarily stable large-area protein-protein interfaces. In their classic paper Kyte and Doolittle (KD) concluded that the "simplicity and graphic nature of hydrophobicity scales make them very useful tools for the evaluation of protein structures". In practice, however, attempts to develop hydrophobicity scales (for example, compatible with classical force fields (CFF) in calculating the energetics of protein folding) have encountered many difficulties. Here we suggest an entirely different approach, based on the idea that proteins are self-organized networks, subject to finite-scale criticality (like some network glasses). We test this proposal against two small proteins that are delicately balanced between alpha and alpha/beta structures, with different functions encoded with only 12% of their amino acids. This example explains why protein structure prediction is so challenging, and it provides a severe test for the accuracy and content of hydrophobicity scales. The new method confirms KD's evaluation, and at the same time suggests that protein structure, dynamics and function can be best discussed without using CFF
    • 

    corecore